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1 Classification of single voice commands

1.1 Parameter tuning

According to some research [1] [2] [3], it turns out that in the context of ASR, typical frame sizes range
from 20 ms to 40 ms with 50% (+/ − 10%) overlap between consecutive frames. Popular settings are
25 ms for the frame size and a 10 ms stride (15 ms overlap). So I fix wlen = 0.025 and frate = 100 for
both Mel filterbank and MFCC features.

As for the frequency range that the filters need to span, we all know that the range of hearing which
is about 20 Hz to 20 kHz. However it might not be necessary to consider all of them because given the
fixed sampling frequency 16000 Hz of the dataset, we should obey Nyquist–Shannon sampling theorem
which states that the maximum of the frequency of the signal should not exceed one half of the sampling
frequency, otherwise there would be aliasing. Given a fixed sampling frequency, the length of processed
signal increases proportionally to the frequency range, which might influence the speed of the calculation
of features. It seems that the telephone which transmits only a useful part of the voice frequency band
namely 0.3 kHz to 3.4 kHz is enough to make the voice understandable. However, the quality of the
voice with this range (300 Hz - 3.4 kHz) is fairly compromised. According to [3], 80 Hz to 8 kHz gives a
very good quality, which also achieves the limit of Nyquist–Shannon sampling theorem. Table 1 shows
the comparison of accuracy and time consumption on validation set with these two frequency ranges.
The accuracy reported in Table 1 are obtained using a basic classifier, they are used to compare the two
frequency ranges but does not represent the performance of the best classifier and features.

As for the other parameters of Mel filterbank and MFCC, I follow the classical setting according
to [1]: 40 triangular filters in the filterbank, 512-point FFT on each frame to calculate the frequency
spectrum, MFCC calculated with 13 cepstral coefficients (typically, only cepstral coefficients 2-13 are
retained) with the concatenation of first and second order derivatives, pre-emphasis filter coefficient
α = 0.97.

All else being equal, this parameter setting provides significantly better results compared to the
default setting according to my experiments.

1.2 Feature padding

Given the sampling frequency 16000, some waveform samples of the WAV files provided have a size
less than 16000, for example, waveform lengths like 13654, 15702, 15019, 14118 are observed. As a
consequence, the Mel filterbank / MFCC features obtained from these WAV files may not have the
same size. Let’s take Mel filterbank feature as an example, we denote the number of frames by Nframe,
the number of filters in filterbank by Nfilter, the size of feature corresponding to a single WAV file by
S, we have Equation 1.

Accuracy / Time Mel filterbank MFCC

300 Hz - 3.4 kHz 15.7% / 304 s 17.1% / 396 s

80 Hz - 8 kHz 22.7% / 302 s 40.9% / 395 s

Table 1: Comparison of frequency ranges using basic logistic regression. Time consumption in seconds
is the sum of the time of feature transformation and the time of training of model. The variance of
accuracy is very large, MFCC with 80Hz-8kHz can also encounter a validation accuracy of 10%.
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Without CMVN With CMVN

21.0% 39.1%

Table 2: Comparison of effect of CMVN using basic logistic regression with MFCC 80Hz-8kHz, 9000
training examples

Logistic Neural 160 Neural 6×90 Neural 6×160 Neural 6×250

38.8% / 9 s 60.2% / 33 s 62.4% / 96 s 66.5% / 132 s 60.8% / 320 s

Table 3: Model selection using 9000 training examples. Validation accuracy / time.

S = Nframe ×Nfilter (1)

S is thus proportional to the size of the corresponding WAV file because Nframes is proportional
to the size of the corresponding WAV file. If the size of all WAV files are not equal, then the size of
obtained features are not equal. Zero padding is thus used to make features of a given data set have the
same size. In my work, I pad only on the right hand side instead of padding on both sides, this is to keep
the semantic consistency of features along different instances. As for the minimum length of padded
features, I keep 3939 in case of MFCC as 3939 = 101×39, 101 is the number of frames corresponding to
a 10 ms frame stride, 39 is the dimension of MFCC of a single frame in case of 13 cepstral coefficients
with concatenation of first and second order derivatives.

1.3 Cepstral Mean and Variance Normalization

As suggested in the instruction, a standard way of improving generalization is to do mean-variance
normalization on your data set, which means to compute the mean and variance of each feature dimen-
sion on the entire training set, and then use it to normalize train, valid and test set. This procudure
can be referred to as Cepstral mean and variance normalization (CMVN) and is a common practice in
speech recognition [1] [4]. It should be noted that according to [4], the performance of CMVN is known
to degrade for short utterances, which is due to insufficient data for parameter estimation and loss of
discriminable information as all utterances are forced to have zero mean and unit variance. Table 2
shows the effect of CMVN using a basic classifier, CMVN significantly improves the performance with
this data set.

1.4 Model selection

By several experiments, I observe that using 9000 training examples, the validation accuracy of models
has large variance. To do a robust model selection, I run multiple times the same model with different
random states and then take the average accuracy. By doing this, I try to avoid selecting models from
random noises. Table 3 shows the results of some experiments. It is obvious that neural networks are
more suitable for this task at the expense of training time. Among the neural networks, it turns out that
deep neural networks with large number of parameters usually have better performance. However, if the
number of parameters is too large, the validation performance may degrade, which could be explained
by the difficulty of training or over-fitting on training set. In the end, I choose to use MLP neural
network with 6 hidden layers, each hidden layer has 160 neurons.

1.5 Final classifier for single speech command

In total 64727 audio files are provided in the data set, among which 1000 are used as validation set, 1000
are used as test set. The audio files provided for training are not equally distributed. Among audio files
for training, the least frequent label has 1713 occurrences, the most frequent label has 2380 occurrences.
If one needs a balanced training data set without using data augmentation techniques, he could use
up to 1713 examples per class, i.e. 51390 training examples in total as there are 30 classes. I choose
to use 51000 examples as training set, i.e. 1700 examples per class. Larger training set requires more
computation time and memory. I don’t augment the training data set by adding noises because I am
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Validation Test

69.5% 70.4%

Table 4: Final single speech command results

not faced with the lack of data, I don’t even use all the data provided. With 51000 training examples,
1000 validation examples, 1000 test examples, the time used to transform waveform to features is about
9 minutes, the time used to train the MLP model is about 8 minutes. Table 4 shows the results on
validation set and test set.

The summary of final setting is as follows: MFCC (nflit = 40, ncep = 13, 80 Hz - 8 kHz, α = 0.97,
frate = 100, wlen = 0.025, nfft = 512, with first and second order derivatives), Cepstral Mean and
Variance Normalization, features padded only on the right hand side with 3939 as minimum length,
51000 training examples without using data augmentation, 6× 160 MLP neural network classifier.

2 Classification of segmented voice commands

2.1 Questions

Question 2.1

Word Error Rate is defined as

WER =
substitution S + insertion I + deletion D

number of words in reference sequence N
(2)

It is not possible that WER < 0 because S >= 0, I >= 0, D >= 0, N >= 0. It is possible that WER
> 1 because it is possible that S + I + D > N . For example, WER −→ ∞ when insertion I −→ ∞
given a fixed finite N . This is valid because I has no constraints besides I >= 0, it is not restricted by
S,D,N .

Question 2.2

This line of code approximated the prior probability of each word Wi to be equal:

nb ex per class = 1700

The training set is then appended only if the number of examples in the corresponding class does not
exceed nb ex per class.

Question 2.3

WER is just Levenshtein distance adapted for words. After alignment, one uses Equation 2 to compute
the value of WER.

Question 2.4

Laplace smoothing bigram approximation formula of the language model is Equation 3. It should be
noted that when doing N -grams with N larger than 1, it is useful to create a symbol for the termination
of sentences and a symbol for the beginning of sentences, which will be considered as a word.

PLaplace bi-gram(wi|wi−1) =

∑
1{wi−1wi} + 1∑

1{wi−1} + |vocabulary|
(3)

Question 2.5

There are several ways of smoothing to deal with sparsity of the data. Common ones are Laplace (add-
one) smoothing, backoff, Jelinek-Mercer interpolation and Kneser-Ney Smoothing. Laplace smoothing
is the most simple and the most intuitive, however, if the bi-grams are sparse, Laplace smoothing
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greedy search beam search Viterbi algorithm

train WER 48.4% 16.0% 41.3%

test WER 47.9% 13.1% 41.8%

decoding time 0.038 ms 1.695 ms 1.679 ms

Table 5: Segmented voice command classification results. Decoding time means time in milliseconds
used for one execution of algorithm.

mean value variance minimum value maximum value

61.2 2626.96 0 206

Table 6: Occurrences of different single speech commands in test set (test sequence list).

would assign too much weights to bi-grams that never appeared. Further more, Laplace smoothing
assign equal probability to all bi-grams that never appeared in the training set, which might not be
the optimal choice. Backoff means to use information of lower order N -grams when the higher order
N -grams do not appear. Jelinek-Mercer Interpolation does a convex combination of different order
N -grams, however the optimal value of coefficients of convex combination should be determined by EM
algorithms. Kneser-Ney smoothing [5] is widely considered the most effective method of smoothing but
it is quite complicated.

In the implementation, I use log scale instead of linear scale to avoid numerical instabilities.

Question 2.6

Increasing N gives more robust language models but the complexity grows exponentially.

Question 2.7

Time complexity of beam search algorithm is O(LBV log(BV )), where B is the beam size, L is the
length of sentence, V is the size of vocabulary. The term BV log(BV ) comes from the sorting which
dominates linear search.

Question 2.8

Let’s denote the probability to be in state j at step k by Pk(j), the probabilities to be in state j′ at step
k − 1 by Pk−1(j

′), A the transition matrix. We have Equation 4.

Pk(j) = Pk−1(j
′)A(k − 1, k) (4)

The final complexity of Viterbi algorithm is O(LV 2), where L represents the length of sequence, V
represents the size of vocabulary.

2.2 Analysis of results of segmented classification task

Table 5 shows results of three decoding strategies. It is confirmed that by using greedy search, the train
WER and test WER are approximately the same as the language model is not taken into account in
decoding. Computation time for beam search and Viterbi algorithm are approximately the same, while
greedy search is much faster. In terms of accuracy, it turns out that beam search has a significantly better
performance than the others, especially in terms of test WER which achieves 13.1%. Viterbi algorithm
only performs slightly better than the greedy approach, which could be explained by the fact that we
approximate P(speech|word) by P(word|speech). In training phase of single speech command classifier,
words are equally distributed so we have constant P(word), which is not the case for P(speech). For
example, single speech commands in test set of segmented speech sequences are not equally distributed,
which is shown in Table 6.
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