

Introduction to Digital Imaging
 Project Report

Copy-move forgery detection based on PatchMatch

Haozhe Sun

 1

Table of contents
1. Introduction .. 2

2. Algorithm.. 3

2.1 Image forgery detection pipeline ... 3

2.2 Modified-PatchMatch .. 3

2.3 Discussion about the proposed algorithm 5

2.4 Discussion about the image forgery detection pipeline 5

3. Implementation .. 7

4. Experiments .. 8

4.1 Discussion .. 8

4.2 Successful examples .. 10

4.3 Failed examples ... 13

4.4 Limitations... 16

5. References .. 17

 2

1. Introduction

 In the context of project of MVA Introduction to Digital imaging, I have
chosen the project Copy-move forgery detection based on PatchMatch [1].
I have chosen this project because I want to get the first experience in
manipulating image pixels rather than studying and tuning the Deep
Learning models. I want to get an intuition and experience with the
classical image processing techniques. Furthermore, I always heard about
patch-based method, I think this project could be a good opportunity to get
to know it.

 My project is related to the image forensics, i.e. image edition forgery
detection. In particular, [1] is focused on the Copy-Move case, which is a
special case of image forgery. The authors presented an algorithm
adapted from the classical PatchMatch algorithm which aims to increase
the robustness. I have implemented this algorithm from scratch and
showed some qualitative results.

 3

2. Algorithm

 In this section, I will briefly present the algorithm and make some
remarks on the processing pipeline.

2.1 Image forgery detection pipeline

 The basic idea behind PatchMatch algorithm is that identical or
similar regions in the image are discovered based on matching. This
procedure mainly consists of 3 steps:

• Featuring: suitable features are associated with all pixels or with a
limited set of key points

• Matching: for each pixel of interest, the best matching is located
based on the associated features

• Post-processing: the displacement field is filtered and processed to
detect actual copy-moved regions.

 This paper [1] mainly talks about the second step Matching, where
they presented their modified-PatchMatch algorithm.

2.2 Modified-PatchMatch

 To present the modified-PatchMatch algorithm, I should introduce
the basic version of PatchMatch algorithm.

 The PatchMatch algorithm is a fast randomized algorithm which
could find a dense approximate nearest neighbor matches, that we call
NNF, of an image or two images. An NNF is just a 2D mapping where
each patch is associated with a vector, that indicates its nearest neighbor
patch in the same image or in another target image. All our copy-move
detection will be based on this NNF. However, the naïve approach to
calculate the exact NNF is not acceptable because of high time complexity.
PatchMatch algorithm has been proposed to tackle this problem by
iteratively calculate an approximation of the exact NNF.

 4

Here is the pseudo code of the basic PatchMatch algorithm:

• Random initialization of NNF such that for each point 𝑧 , the

displaced 𝑧 + 𝑛𝑛𝑓(𝑧) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝛺), where 𝑛𝑛𝑓 can be seen as a
mapping from 2D points to a 2D offset, 𝛺 is the support of the image.

• For a certain number of iterations, do:

▪ Propagation: the image is raster scanned top-down or left-to-right

according to the parity of iteration to avoid biases.

For each pixel 𝑧,

 𝑛𝑛𝑓(𝑧) = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝛿∈{𝑛𝑛𝑓(𝑧),𝑛𝑛𝑓(𝑧𝑢),𝑛𝑛𝑓(𝑧𝑙)}
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃(𝑧), 𝑃(𝑧 + 𝛿))

▪ Random search: the image is raster scanned in the same way as

before. Candidates become:

𝑛𝑛𝑓(𝑧) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛿∈{𝑓0,𝑓1,𝑓2,…… }

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃(𝑧), 𝑃(𝑧 + 𝛿))

𝑓𝑖 = 𝑛𝑛𝑓(𝑧) + 2𝑖−1𝑅𝑖

where 𝑅𝑖 represents a bi-dimensional random variable uniform in
{−1, 0, 1} × {−1, 0, 1} excluding (0, 0) . 𝑃 represents the patch

which is represented by the pixel 𝑧 . The choice of distance

measure is not fixed a priori. 𝑧𝑢 and 𝑧𝑙 means upper neighbor
pixel and left neighbor pixel.

The modified-PatchMatch consists in one modification in the Propagation
phase. Instead of considering the candidate set:

{𝑛𝑛𝑓(𝑧), 𝑛𝑛𝑓(𝑧𝑢), 𝑛𝑛𝑓(𝑧𝑙)}

we consider the candidate set:

{𝑛𝑛𝑓(𝑧), 𝑛𝑛𝑓(𝑧𝑢) + ∆ 𝑛𝑛𝑓(𝑧𝑢), 𝑛𝑛𝑓(𝑧𝑙) + ∆ 𝑛𝑛𝑓(𝑧𝑙)}
where

∆ 𝑛𝑛𝑓(𝑧𝑢) = 𝑛𝑛𝑓(𝑧𝑢) − 𝑛𝑛𝑓(𝑧𝑢𝑢)

𝑧𝑢𝑢 represents the pixel above 𝑧𝑢

 5

2.3 Discussion about the proposed algorithm

 This modification is proposed aimed to deal with rotations without
impairing the performance in their absence. In fact, the propagation
candidate set consists of zero-order predictors, which are effective only in
constant regions, i.e. NNF is uniform. The modified propagation candidate
set consists of first-order predictors that corresponds to a linearly varying
NNF. The rotated copy-moves correspond to a linearly varying NNF so we
say that the modified version of PatchMatch deals with piece-wise linear
NNF, whereas the basic version of PatchMatch only deals with piece-wise
constant NNF.

 However, to deal with resizing, the authors of the paper only rely on
the intrinsic robustness of the algorithm for scales close to 1.

 One important remark on PatchMatch based algorithms is the
fundamental hypothesis that the true NNF is mostly regular, composed of
a relatively small number of regions with the same displacement.

2.4 Discussion about the image forgery detection pipeline

 The paper [1] is mainly focused on the modified PatchMatch
algorithm, which represents the matching phase in the detection pipeline.
As for the featuring phase and post-processing phase, the authors just
mentioned them quickly without much explication.

 [1] mainly talked about 2 choices of features that we can use. The
first one is RGB values, in this case the associated distance measure
could be the L1 norm. The second one is Zernike moments, which turn out
to be rotation invariant. The authors mainly did the experiments with
Zernike moments; however, I chose to implement the algorithm with RGB
values.

 It is my first time to discover the theory of image moments. According
to my research, the image moments are used to represent to shape or a
contour, it does a kind of 2D integration of each point presented in the
shape with respect to the centroid of this shape. What I understood is that
I could make use of this kind of descriptor only if I have a binary 2D image
that could be seen as a contour. However, in the context of [1], I deal with
image patches that are characterized by intensity in three color channels
in every location. I have the choice to do the thresholding to transform a
such intensity patch into a binary image, but I do not see what kind of

 6

criterion could be used to let the filtering make sense for every patch. As
a consequence, I chose to pick RGB values, that are more intuitive. The
distance measure is thus the L1 norm distance.

 The post-processing method used in [1] consists of filtering and
Same Affine Transformation Selection (SATS) [2], which consists in
collecting in groups the surviving matches so that matches in the same
group have the same transformation pattern. However, this method is not
well explained.

In my implementation, the post-processing phase consists of:

• NNF offsets less than a certain threshold are filtered out

• A binary map is generated by the normalized sum of NNF and the
associated distance field map. This distance field map is processed
so that the values more than a certain quantile are set to the
maximum value of distance field, this processing is to filter out the
locations whose corresponding distance is too big. Then the
normalized sum of NNF and the processed distance field map is
processed by a thresholding of a certain quantile.

The binary map obtained can be seen as an indicator of the presence of
matched patch. Small value in this map will have zero value, which means
a possible match. However, the determination of presence of match
should also take into account the L1 norm of NNF map and the distance
field map, because sometimes the binary map can be not that informative
if we do not choose the parameters properly.

 7

3. Implementation

 I have implemented the modified-PatchMatch algorithm from scratch
in Python. Some visualization and post-processing functionalities are also
provided.

 In the implementation, each patch is represented by its upper left
pixel, called representative pixel. The height and width of the NNF are
determined by the image size and the patch size.

 Besides the NNF, I also calculate a distance field map which aims to
represent the distance between the matched patches, which could be
useful when we try to identify real matches from match candidates.

 We should take care of zero values in the NNF, because the zero
values in the NNF may quickly propagate to all the field, which leads to a
useless NNF. The zero values in the NNF are mostly introduced at the
random initialization phase. This can be tackled by a slight post-
processing of initialization phase, where we slightly increment or
decrement the zero values without changing too much the uniform
distribution nature. This is even not necessary, because it will be sufficient
to stop the propagation of zero values in the iteration loops. The zero-
value elimination in the iteration loops is useful because zero values could
also be introduced in the propagation phase because of the presence of
subtraction operations in the first-order predictors.

 I also came across on the internet one strange trick that is believed
to be practiced by the author of the basic PatchMatch, that I call “zero
border” trick. This trick consists in setting to zero in the initialization of the
border (with a certain width) of NNF. The justification is that the patches in
the border zone is considered to be similar to no other patch in the image.
I implemented this trick as an option and I tested its performance before I
introduce the function of elimination of zero values in iterative loops (if not,
zero borders will have no effects). However, it turns out that the zero
border with a border size of 1 does not give better results than without
according to some visual tests. A zero border with a border size of 2 or
bigger will ruin all the NNF as zero values will be propagated everywhere.
I kept the implementation of this trick as an option in the code and turned
it off by default, which allows further study without impairing the
performance of the algorithm.

 8

4. Experiments
4.1 Discussion

 The Python implementation of the modified-PatchMatch algorithm is
relatively slow, so I chose to format the input images to be of size (200,
150). With input images of this size, the whole computation time of
modified-PatchMatch, post-processing, and visualization for one image
with 5 iterations takes about 115 seconds.

 The number of iterations is fixed to 5 by default. This is a well-known
empirical result of PatchMatch, the algorithm of PatchMatch quickly
converges within a very limited number of iterations, no more than 5. This
is also true for the modified-PatchMatch algorithm. According to my
experiments, I find out that the algorithm could converge even with 2 or 3
iterations. To keep the result reliable, we keep the default number of
iterations to be 5 at the expense of computation time.

 Here is an example of the visualization of the output. The 3 figures
of the first line represent the NNF, respectively the first axis, the second
axis, and the L1 norm of the NNF. In the second line, the processed
distance field map and the binary map are presented. All of these figures

 9

are plotted in absolute value. The input image is visualized in the lower
right corner.

 We clearly recognize that the copy-moved part, i.e. the two standing
girls beside the train are detected as matched patch by the binary map,
distance field map and NNF, even if there is much noise around. In the
first figure, we confirm that the vertical offset (first axis) is almost zero. In
the second figure, we confirm that the horizontal offset (second axis) is
non-zero but has small value.

 This is a successful case. However, I should say that this kind of
situation is not that frequent. To get a good result, the choice of
parameters is sometimes critical. These parameters mainly include the
patch size, the threshold of NNF filtering and the threshold of binary map.
The above result has been achieved with 16 as patch size, 10 as NNF
threshold and 0.3 as binary map threshold.

 The quality of results sometimes depends on tuning of parameters,
the parameters depend on the size and the content of the images, which
means that it is difficult to find the best parameters that are suitable for all
images. However, the above setting is kept as default parameters
because it turns out that they can be used in many cases. Then it seems
that this algorithm is not that robust. Even with the same parameters, we
can get different results, sometimes the copy-moved parts are not
correctly identified by the algorithm. Multiple running of the algorithm could
tackle this problem.

 The noise presented in the detected candidate matched patches are
usually due to the presence of homogeneous background. For example, if
the background of the image are black/white or equipped with some similar

 10

textures. The algorithm has trends to match them and then the real match
will be flooded because the detection is based on a certain quantile. That
is why the tuning of parameters patch size, nnf threshold and binary map
threshold is crucial.

 The test has been carried out on a data set that I collected myself,
some of the copy-move operations are manually made using GIMP 2.0,
an open source image manipulation software. A small portion of images
are taken from the Copy-Move Forgery Database with Similar but Genuine
Objects (COVERAGE) [3]. Each new image is formatted to the same size
before the other processing.

4.2 Successful examples

 Some other relatively successful results are shown here:

The above result is obtained with batch size = 16, NNF threshold = 10,
binary map threshold = 0.3.

 11

The above result is obtained with batch size = 16, NNF threshold = 14,
binary map threshold = 0.25.

The above result is obtained with batch size = 16, NNF threshold = 10,
binary map threshold = 0.4.

 12

The above result is obtained with batch size = 10, NNF threshold = 10,
binary map threshold = 0.4.

The above result is obtained with batch size = 6, NNF threshold = 40,
binary map threshold = 0.4.

 13

The above result is obtained with batch size = 16, NNF threshold = 80,
binary map threshold = 0.3.

4.3 Failed examples
Now we show some failed cases:

 14

 In this case, the algorithm is not at all capable to capture the copy-
moved part. The main reason behind this is the presence of homogeneous
texture in the background and on the wool of the sheep. This floods the
copy-moved third leg and thus prevents the algorithm to detect it. There
are many failed cases, the most frequent reason is the homogeneousness
in the images.

 15

 16

4.4 Limitations

 To solve the problem caused by the homogeneousness in the
images, I came up with an idea similar to the Nearest Neighbor procedure.
The idea is that for each patch, we do not only find its closest neighbor but
also its first two or three closest neighbors. Then we look at the similarity
or distance between these candidates with respect to the reference patch,
if the closest neighbor is not far better than the other neighbors, it is
probable that this is not a good match and is just due to the
homogeneousness of the image. In practice, the implementation of the
variant could be done by associating with each representative pixel an
ordered list of candidate offsets, instead of one candidate offset in the
phases of propagation and random search. In the end we could filter out
the NNF elements whose first match is not far better than its other matches.
This naïve idea may increase the computation time.

 Then, for all the examples including the successful ones, the
success of experiments depends on the choice of parameters and the
algorithm implemented is not that stable. Furthermore, the successful
cases are usually the cases where the copy-move operations is not
equipped with rotations. In my opinion, this is partly due to the property of
the selected feature, i.e. RGB values.

 17

5. References

[1] D. Cozzolino, G. Poggi, and L. Verdoliva, “Copy-move forgery detection
based on PatchMatch,” in Proc. IEEE Int. Conf. Image Process.,
Oct. 2014, pp. 5312–5316.

[2] V. Christlein, C. Riess and E. Angelopoulou, “On rotation in- variance
in copy-move forgery detection,” IEEE International Workshop on
Information Forensics and Security (WIFS), pp. 1–6, 2010.

[3] B. Wen, Y. Zhu, R. Subramanian, T. Ng, X. Shen, and S. Winkler,
"COVERAGE - A Novel Database for Copy-Move Forgery Detection," in
Proc. IEEE Int. Conf. Image Processing (ICIP), 2016.

	1. Introduction
	2. Algorithm
	2.1 Image forgery detection pipeline
	2.2 Modified-PatchMatch
	2.3 Discussion about the proposed algorithm
	2.4 Discussion about the image forgery detection pipeline

	3. Implementation
	4. Experiments
	4.1 Discussion
	4.2 Successful examples
	4.3 Failed examples
	4.4 Limitations

	5. References

