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1. Introduction 
 
 In the context of project of MVA Introduction to Digital imaging, I have 
chosen the project Copy-move forgery detection based on PatchMatch [1]. 
I have chosen this project because I want to get the first experience in 
manipulating image pixels rather than studying and tuning the Deep 
Learning models. I want to get an intuition and experience with the 
classical image processing techniques. Furthermore, I always heard about 
patch-based method, I think this project could be a good opportunity to get 
to know it. 
 
 My project is related to the image forensics, i.e. image edition forgery 
detection. In particular, [1] is focused on the Copy-Move case, which is a 
special case of image forgery. The authors presented an algorithm 
adapted from the classical PatchMatch algorithm which aims to increase 
the robustness. I have implemented this algorithm from scratch and 
showed some qualitative results.  
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2. Algorithm 
 
 In this section, I will briefly present the algorithm and make some 
remarks on the processing pipeline. 
 

2.1 Image forgery detection pipeline 
 
 The basic idea behind PatchMatch algorithm is that identical or 
similar regions in the image are discovered based on matching. This 
procedure mainly consists of 3 steps: 
 

• Featuring: suitable features are associated with all pixels or with a 
limited set of key points 
 

• Matching: for each pixel of interest, the best matching is located 
based on the associated features 
 

• Post-processing: the displacement field is filtered and processed to 
detect actual copy-moved regions.  

 
 This paper [1] mainly talks about the second step Matching, where 
they presented their modified-PatchMatch algorithm.  
 
 
 

2.2 Modified-PatchMatch 
 
 To present the modified-PatchMatch algorithm, I should introduce 
the basic version of PatchMatch algorithm. 
 
 The PatchMatch algorithm is a fast randomized algorithm which 
could find a dense approximate nearest neighbor matches, that we call 
NNF, of an image or two images. An NNF is just a 2D mapping where 
each patch is associated with a vector, that indicates its nearest neighbor 
patch in the same image or in another target image. All our copy-move 
detection will be based on this NNF. However, the naïve approach to 
calculate the exact NNF is not acceptable because of high time complexity. 
PatchMatch algorithm has been proposed to tackle this problem by 
iteratively calculate an approximation of the exact NNF. 
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Here is the pseudo code of the basic PatchMatch algorithm: 
 

• Random initialization of NNF such that for each point 𝑧 , the 

displaced 𝑧 + 𝑛𝑛𝑓(𝑧) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝛺), where 𝑛𝑛𝑓 can be seen as a 
mapping from 2D points to a 2D offset, 𝛺 is the support of the image.  
 

• For a certain number of iterations, do: 
 
▪ Propagation: the image is raster scanned top-down or left-to-right 

according to the parity of iteration to avoid biases.  

For each pixel 𝑧, 
 
 𝑛𝑛𝑓(𝑧) =  𝑎𝑟𝑔 𝑚𝑖𝑛

𝛿∈{𝑛𝑛𝑓(𝑧),𝑛𝑛𝑓(𝑧𝑢),𝑛𝑛𝑓(𝑧𝑙)}
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃(𝑧), 𝑃(𝑧 +  𝛿))  

 
▪ Random search: the image is raster scanned in the same way as 

before. Candidates become: 
 

𝑛𝑛𝑓(𝑧) =  𝑎𝑟𝑔 𝑚𝑖𝑛
𝛿∈{𝑓0,𝑓1,𝑓2,…… }

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃(𝑧), 𝑃(𝑧 +  𝛿)) 

 

𝑓𝑖 = 𝑛𝑛𝑓(𝑧) +  2𝑖−1𝑅𝑖 
 

where 𝑅𝑖 represents a bi-dimensional random variable uniform in 
{−1, 0, 1} × {−1, 0, 1}  excluding (0, 0) . 𝑃  represents the patch 

which is represented by the pixel 𝑧 . The choice of distance 

measure is not fixed a priori. 𝑧𝑢  and 𝑧𝑙  means upper neighbor 
pixel and left neighbor pixel. 
 
 

The modified-PatchMatch consists in one modification in the Propagation 
phase. Instead of considering the candidate set: 
 

{𝑛𝑛𝑓(𝑧), 𝑛𝑛𝑓(𝑧𝑢), 𝑛𝑛𝑓(𝑧𝑙)} 
 
we consider the candidate set: 
 

{𝑛𝑛𝑓(𝑧), 𝑛𝑛𝑓(𝑧𝑢) +  ∆ 𝑛𝑛𝑓(𝑧𝑢), 𝑛𝑛𝑓(𝑧𝑙) + ∆ 𝑛𝑛𝑓(𝑧𝑙)} 
where 
 

∆ 𝑛𝑛𝑓(𝑧𝑢) = 𝑛𝑛𝑓(𝑧𝑢) − 𝑛𝑛𝑓(𝑧𝑢𝑢) 

𝑧𝑢𝑢 represents the pixel above 𝑧𝑢 
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2.3 Discussion about the proposed algorithm 
 
 This modification is proposed aimed to deal with rotations without 
impairing the performance in their absence. In fact, the propagation 
candidate set consists of zero-order predictors, which are effective only in 
constant regions, i.e. NNF is uniform. The modified propagation candidate 
set consists of first-order predictors that corresponds to a linearly varying 
NNF. The rotated copy-moves correspond to a linearly varying NNF so we 
say that the modified version of PatchMatch deals with piece-wise linear 
NNF, whereas the basic version of PatchMatch only deals with piece-wise 
constant NNF.  
 
 However, to deal with resizing, the authors of the paper only rely on 
the intrinsic robustness of the algorithm for scales close to 1.  
 
 One important remark on PatchMatch based algorithms is the 
fundamental hypothesis that the true NNF is mostly regular, composed of 
a relatively small number of regions with the same displacement.  
 

2.4 Discussion about the image forgery detection pipeline 
 
 The paper [1] is mainly focused on the modified PatchMatch 
algorithm, which represents the matching phase in the detection pipeline. 
As for the featuring phase and post-processing phase, the authors just 
mentioned them quickly without much explication.  
 
 [1] mainly talked about 2 choices of features that we can use. The 
first one is RGB values, in this case the associated distance measure 
could be the L1 norm. The second one is Zernike moments, which turn out 
to be rotation invariant. The authors mainly did the experiments with 
Zernike moments; however, I chose to implement the algorithm with RGB 
values.  
 
 It is my first time to discover the theory of image moments. According 
to my research, the image moments are used to represent to shape or a 
contour, it does a kind of 2D integration of each point presented in the 
shape with respect to the centroid of this shape. What I understood is that 
I could make use of this kind of descriptor only if I have a binary 2D image 
that could be seen as a contour. However, in the context of [1], I deal with 
image patches that are characterized by intensity in three color channels 
in every location. I have the choice to do the thresholding to transform a 
such intensity patch into a binary image, but I do not see what kind of 
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criterion could be used to let the filtering make sense for every patch. As 
a consequence, I chose to pick RGB values, that are more intuitive. The 
distance measure is thus the L1 norm distance.  
 
 The post-processing method used in [1] consists of filtering and 
Same Affine Transformation Selection (SATS) [2], which consists in 
collecting in groups the surviving matches so that matches in the same 
group have the same transformation pattern. However, this method is not 
well explained.  
 
In my implementation, the post-processing phase consists of: 
 

• NNF offsets less than a certain threshold are filtered out 
 

• A binary map is generated by the normalized sum of NNF and the 
associated distance field map. This distance field map is processed 
so that the values more than a certain quantile are set to the 
maximum value of distance field, this processing is to filter out the 
locations whose corresponding distance is too big. Then the 
normalized sum of NNF and the processed distance field map is 
processed by a thresholding of a certain quantile.  
 

The binary map obtained can be seen as an indicator of the presence of 
matched patch. Small value in this map will have zero value, which means 
a possible match. However, the determination of presence of match 
should also take into account the L1 norm of NNF map and the distance 
field map, because sometimes the binary map can be not that informative 
if we do not choose the parameters properly.  
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3. Implementation 
 
 I have implemented the modified-PatchMatch algorithm from scratch 
in Python. Some visualization and post-processing functionalities are also 
provided.  
 
 In the implementation, each patch is represented by its upper left 
pixel, called representative pixel. The height and width of the NNF are 
determined by the image size and the patch size.  
 
 Besides the NNF, I also calculate a distance field map which aims to 
represent the distance between the matched patches, which could be 
useful when we try to identify real matches from match candidates.  
 
 We should take care of zero values in the NNF, because the zero 
values in the NNF may quickly propagate to all the field, which leads to a 
useless NNF. The zero values in the NNF are mostly introduced at the 
random initialization phase. This can be tackled by a slight post-
processing of initialization phase, where we slightly increment or 
decrement the zero values without changing too much the uniform 
distribution nature. This is even not necessary, because it will be sufficient 
to stop the propagation of zero values in the iteration loops. The zero-
value elimination in the iteration loops is useful because zero values could 
also be introduced in the propagation phase because of the presence of 
subtraction operations in the first-order predictors. 
 
 I also came across on the internet one strange trick that is believed 
to be practiced by the author of the basic PatchMatch, that I call “zero 
border” trick. This trick consists in setting to zero in the initialization of the 
border (with a certain width) of NNF. The justification is that the patches in 
the border zone is considered to be similar to no other patch in the image. 
I implemented this trick as an option and I tested its performance before I 
introduce the function of elimination of zero values in iterative loops (if not, 
zero borders will have no effects). However, it turns out that the zero 
border with a border size of 1 does not give better results than without 
according to some visual tests. A zero border with a border size of 2 or 
bigger will ruin all the NNF as zero values will be propagated everywhere.  
I kept the implementation of this trick as an option in the code and turned 
it off by default, which allows further study without impairing the 
performance of the algorithm.  
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4. Experiments 
4.1 Discussion 

 
 The Python implementation of the modified-PatchMatch algorithm is 
relatively slow, so I chose to format the input images to be of size (200, 
150). With input images of this size, the whole computation time of 
modified-PatchMatch, post-processing, and visualization for one image 
with 5 iterations takes about 115 seconds.  
 
 The number of iterations is fixed to 5 by default. This is a well-known 
empirical result of PatchMatch, the algorithm of PatchMatch quickly 
converges within a very limited number of iterations, no more than 5. This 
is also true for the modified-PatchMatch algorithm. According to my 
experiments, I find out that the algorithm could converge even with 2 or 3 
iterations. To keep the result reliable, we keep the default number of 
iterations to be 5 at the expense of computation time. 
 
 Here is an example of the visualization of the output. The 3 figures 
of the first line represent the NNF, respectively the first axis, the second 
axis, and the L1 norm of the NNF. In the second line, the processed 
distance field map and the binary map are presented. All of these figures 
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are plotted in absolute value. The input image is visualized in the lower 
right corner. 
 
 We clearly recognize that the copy-moved part, i.e. the two standing 
girls beside the train are detected as matched patch by the binary map, 
distance field map and NNF, even if there is much noise around. In the 
first figure, we confirm that the vertical offset (first axis) is almost zero. In 
the second figure, we confirm that the horizontal offset (second axis) is 
non-zero but has small value.  
 
 

 
 
 
 This is a successful case. However, I should say that this kind of 
situation is not that frequent. To get a good result, the choice of 
parameters is sometimes critical. These parameters mainly include the 
patch size, the threshold of NNF filtering and the threshold of binary map. 
The above result has been achieved with 16 as patch size, 10 as NNF 
threshold and 0.3 as binary map threshold.  
 
 The quality of results sometimes depends on tuning of parameters, 
the parameters depend on the size and the content of the images, which 
means that it is difficult to find the best parameters that are suitable for all 
images. However, the above setting is kept as default parameters 
because it turns out that they can be used in many cases. Then it seems 
that this algorithm is not that robust. Even with the same parameters, we 
can get different results, sometimes the copy-moved parts are not 
correctly identified by the algorithm. Multiple running of the algorithm could 
tackle this problem.  
 
 The noise presented in the detected candidate matched patches are 
usually due to the presence of homogeneous background. For example, if 
the background of the image are black/white or equipped with some similar 
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textures. The algorithm has trends to match them and then the real match 
will be flooded because the detection is based on a certain quantile. That 
is why the tuning of parameters patch size, nnf threshold and binary map 
threshold is crucial. 
 
 The test has been carried out on a data set that I collected myself, 
some of the copy-move operations are manually made using GIMP 2.0, 
an open source image manipulation software. A small portion of images 
are taken from the Copy-Move Forgery Database with Similar but Genuine 
Objects (COVERAGE) [3]. Each new image is formatted to the same size 
before the other processing.  
 

4.2 Successful examples 
 
 Some other relatively successful results are shown here: 
 

 
The above result is obtained with batch size = 16, NNF threshold = 10, 
binary map threshold = 0.3. 
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The above result is obtained with batch size = 16, NNF threshold = 14, 
binary map threshold = 0.25. 

The above result is obtained with batch size = 16, NNF threshold = 10, 
binary map threshold = 0.4. 
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The above result is obtained with batch size = 10, NNF threshold = 10, 
binary map threshold = 0.4. 

The above result is obtained with batch size = 6, NNF threshold = 40, 
binary map threshold = 0.4. 
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The above result is obtained with batch size = 16, NNF threshold = 80, 
binary map threshold = 0.3. 
 

4.3 Failed examples 
Now we show some failed cases: 



 14 

 In this case, the algorithm is not at all capable to capture the copy-
moved part. The main reason behind this is the presence of homogeneous 
texture in the background and on the wool of the sheep. This floods the 
copy-moved third leg and thus prevents the algorithm to detect it. There 
are many failed cases, the most frequent reason is the homogeneousness 
in the images.  
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4.4 Limitations 
 
 To solve the problem caused by the homogeneousness in the 
images, I came up with an idea similar to the Nearest Neighbor procedure. 
The idea is that for each patch, we do not only find its closest neighbor but 
also its first two or three closest neighbors. Then we look at the similarity 
or distance between these candidates with respect to the reference patch, 
if the closest neighbor is not far better than the other neighbors, it is 
probable that this is not a good match and is just due to the 
homogeneousness of the image. In practice, the implementation of the 
variant could be done by associating with each representative pixel an 
ordered list of candidate offsets, instead of one candidate offset in the 
phases of propagation and random search. In the end we could filter out 
the NNF elements whose first match is not far better than its other matches. 
This naïve idea may increase the computation time.   
 
 Then, for all the examples including the successful ones, the 
success of experiments depends on the choice of parameters and the 
algorithm implemented is not that stable. Furthermore, the successful 
cases are usually the cases where the copy-move operations is not 
equipped with rotations. In my opinion, this is partly due to the property of 
the selected feature, i.e. RGB values.  
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