
From GO To Draughts

Haozhe SUN & Tong ZHAO

M2 MVA RL

Contents
● Algorithm Review

● Game Design

● Experiment

● Conclusion

Algorithm Review

ResNet-Based CNN
● Input: game state (8x3x3 tensor)
● 1 convolution block + several residual blocks
● Every block:

○ Convolution layers with 3x3 kernel
○ Batch normalization
○ Relu

● Value head
○ Convolution layers + fc layers
○ Outputs a scalar real value

● Policy head
○ Convolution layers + fc layers
○ Outputs a real-valued vector (8*8*4)

Convolution Block

Residual Block

Residual Block

...

Value Head Policy Head

Game State

Value ([-1, 1]) Policy (vector)

MCTS
● Node:

○ State Node: contains all information of the current game state
○ Action Node: represent the action going from its parent state node to its child

state node

State Node
Parent (1 Action Node)

Children (N Action Nodes)
Game Map (np.array)

Movable Pieces (np.array)
Player (int)

GameOver (bool)

Action Node
Parent (1 State Node)
Child (1 State Node)

Action (tuple)
Piece Coordinate (np.array)

Stats (N, W, Q, P)

MCTS
● Basic Operations:

○ Selection: Choose the following action
■ Deterministic Strategy: choose the node whose N is largest
■ Probabilistic Strategy: 𝜋 ~ N1/τ

○ Expansion: Initialize all possible moves with
■ N = W = Q = 0
■ P = priorCNN

○ Evaluation: A complete process going from the root to a GameOver State
○ Backpropagation

■ N = N + 1, W = W + v, Q = W / N

MCTS
● Simulation

○ Polynomial Upper Confidence Trees (PUCT)

○ Exploration - Exploitation Strategy: Choose the child whose U is largest

■ Large cpuct : encourage exploration

■ Small cpuct : encourage exploitation

ResNet MCTS

Convolution Block

Residual Block

Residual Block

...

Value Head Policy Head

Game State

Value ([-1, 1]) Policy (vector)

N W
P Q

Joint Training

Self-play:

● Creating dataset
● Using the best neural

network so far

Optimization of neural
network:

● Training neural
network

● Sampling batches from
recent self-play games

● Cross-entropy : policy
● Mean squared error :

value

Evaluator:

● Update the best neural
network so far

● Update only if the new
neural network is
stronger according to
results of competition

Three components executed asynchronously in parallel

Game Design

Game Rule - English Draughts
● Move:

○ Single Move: Move forward diagonally to an
unoccupied square

○ Jump: Eat an opponent’s piece which lies on the
adjacent square. Multiple jumps are possible and
mandatory

● King:
○ Once the piece reaches opponent’s border, it becomes

a king and can move both forward and backward
● Game Over:

○ No piece left on the board
○ No possible moves

Game State

Game Map

Piece Map

Player Map

8 x 8 x 3

 0 : No pieces
 1 : White piece
-1 : Black piece

 0 : No pieces / Unmovable pieces
 1 : Movable pieces

 All 1s if white
 All -1s if black

Game Policy

8 x 8 x 4

● The entries are all between 0 and 1, which

represents the probability the piece choose

the direction {NorthWest, NorthEast,

Southwest, SouthEast}.

● The MCTS filters all moves and keeps only

legal moves.

Graphical User Interface (GUI)

(a) Game Board (b) Possible Moves (c) King (d) Animation

Experiment

Training

Param Value Param Value

CPU Intel E3-1231 v3 Learning Rate 0.01

GPU Nvidia GTX 1070 Self Play Time 10

Training Time 3 days Number of Epochs
per Iteration 50

Simulation Per Time 20 cpuct 0.1

Training

DEMO TIME ~

Conclusion

Conclusion

https://github.com/Tong-ZHAO/AlphaDraughts-Zero

● AlphaGo Zero is a efficient yet time-consuming reinforcement learning

algorithm for games with complete information

● Parameter selection is not obvious

● The time of simulation is crucial to get a good model

Thank You!

