
From GO To Draughts

Haozhe SUN & Tong ZHAO

M2 MVA RL



Contents
● Algorithm Review

● Game Design

● Experiment

● Conclusion



Algorithm Review



ResNet-Based CNN
● Input: game state (8x3x3 tensor)
● 1 convolution block + several residual blocks
● Every block:

○ Convolution layers with 3x3 kernel
○ Batch normalization
○ Relu

● Value head
○ Convolution layers + fc layers
○ Outputs a scalar real value

● Policy head
○ Convolution layers + fc layers
○ Outputs a real-valued vector (8*8*4)
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MCTS
● Node: 

○ State Node: contains all information of the current game state
○ Action Node: represent the action going from its parent state node to its child 

state node

State Node
Parent (1 Action Node)

Children (N Action Nodes)
Game Map (np.array)

Movable Pieces (np.array)
Player (int)

GameOver (bool)

Action Node
Parent (1 State Node)
Child (1 State Node)

Action (tuple)
Piece Coordinate (np.array)

Stats (N, W, Q, P)



MCTS
● Basic Operations: 

○ Selection: Choose the following action
■ Deterministic Strategy: choose the node whose N is largest
■ Probabilistic Strategy: 𝜋 ~ N1/τ

○ Expansion: Initialize all possible moves with 
■ N = W = Q = 0
■ P = priorCNN

○ Evaluation: A complete process going from the root to a GameOver State
○ Backpropagation

■ N = N + 1, W = W + v, Q = W / N



MCTS
● Simulation 

○ Polynomial Upper Confidence Trees (PUCT)

○ Exploration - Exploitation Strategy: Choose the child whose U is largest

■ Large  cpuct  : encourage exploration

■ Small  cpuct  : encourage exploitation



ResNet MCTS
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Joint Training

Self-play:

● Creating dataset
● Using the best neural 

network so far

Optimization of neural 
network:

● Training neural 
network

● Sampling batches from 
recent self-play games

● Cross-entropy : policy
● Mean squared error : 

value

Evaluator:

● Update the best neural 
network so far

● Update only if the new 
neural network is 
stronger according to 
results of competition

Three components executed asynchronously in parallel



Game Design



Game Rule - English Draughts
● Move:

○ Single Move: Move forward diagonally to an 
unoccupied square

○  Jump: Eat an opponent’s piece which lies on the 
adjacent square. Multiple jumps are possible and 
mandatory

● King: 
○ Once the piece reaches opponent’s border, it becomes 

a king and can move both forward and backward
● Game Over: 

○ No piece left on the board
○ No possible moves



Game State

Game Map

Piece Map

Player Map

8 x 8 x 3

 0 : No pieces
 1 : White piece
-1 : Black piece

 0 : No pieces / Unmovable pieces
 1 : Movable pieces

 All  1s if white
 All -1s if black



Game Policy

8 x 8 x 4

● The entries are all between 0 and 1, which 

represents the probability the piece choose 

the direction {NorthWest, NorthEast, 

Southwest, SouthEast}.

● The MCTS filters all moves and keeps only 

legal moves.



Graphical User Interface (GUI)

(a) Game Board (b) Possible Moves (c) King (d) Animation



Experiment



Training

Param Value Param Value

CPU Intel E3-1231 v3 Learning Rate 0.01

GPU Nvidia GTX 1070 Self Play Time 10

Training Time 3 days Number of Epochs 
per Iteration 50

Simulation Per Time 20 cpuct 0.1



Training



DEMO TIME ~



Conclusion



Conclusion

https://github.com/Tong-ZHAO/AlphaDraughts-Zero

● AlphaGo Zero is a efficient yet time-consuming reinforcement learning 

algorithm for games with complete information

● Parameter selection is not obvious

● The time of simulation is crucial to get a good model

Thank You!


