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Abstract

AlphaGo Zero is the improved version of AlphaGo, which is developped by Deep-
Mind in 2017. Being the most powerful model at that moment, it achieved a great
success. Unlike all previous models, AlphaGo Zero is impressive and elegant
since it is learnt from scratch without any human knowledges. In this project,
we investigated the algorithm, and then applied it in English Draughts, a popular
two-player board game.

1 Introduction

The Game AI is always a hot research domain for decades. Researchers believe that it is a good
measurement for the effectiveness of artificial intelligence by applying it in games. Alan Turing, the
most famous computer scientist, (re)invented the Minimax algorithm and developed Turochamp [1]
for chess in 1948, which is known to be the earliest computer game player. Deep Blue [2] attracted
wide attention in computer science community after its first victory against Garry Kasparov, a world
champion on 10 February 1996.

Go and chess are both very popular deterministic two-player board games, but Go is much more dif-
ficult because of the huge search space in each game state. In October 2015, DeepMind developped
the first computer Go program - AlphaGo [3] - to beat a human professional Go player without
handicaps on a full-sized 19×19 board, which shocked the world. It is a supervised learning system
combining deep neutral network and tree search algorithm to learn how to make decisions for game
state from human experts. However, on one hand, expert data sets are often expensive, unreliable or
simply unavailable; on the other hand, labeled data constrain the learning ability of the model itself.

AlphaGo Zero [4] is a historical breakthrough in Game AI, not only because that it beated all the
previous version of AlphaGo and all human experts, but also because that it is learnt by self-play
without any human knowledge. The whole framework is composed of a deep neural network fθ,
which predicts at the same time the value and the policy for each game state, and a Monte Carlo
Search Tree (MCTS) guided by fθ, which improves the value and policy in turn. It can be easily
generalized to many games.

In this project, we investigate at first the algorithm flow of AlphaGo Zero. A readily comprehen-
sible interpretation is provided. We then apply the algorithm in English Draughts [5]. The im-
plementation in Python and PyTorch can be found at https://github.com/Tong-ZHAO/
AlphaDraughts-Zero.

The report is organized as following:

• In section 2 and 3, we explained the deep neural network and MCTS used in AlphaGo
Zero, respectively.

• In section 4, we discussed how to train jointly the deep net and the game tree, the loss
function design and the evaluate method.
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• In section 5, we adapted the algorithm to English Draughts and developed our Al-
phaDraughts Zero.

• In the last section, we focus on some interesting open questions and our understandings.

2 Deep Neural Network

AlphaGo Zero makes use of a deep neural network, which aims to, at each time step, predict the
optimal action to take given the current game state. For the implementation of our AlphaDraughts
Zero, we follow the same architecture as the one of AlphaGo Zero except the input and output
format.

2.1 Input and output format

2.1.1 AlphaGo Zero

The input of AlphaGo Zero’s neural network is a 19 × 19 × 17 image stack comprising 17 binary
feature maps, from which 8 feature maps Xt consist of binary values indicating the presence of the
current player’s stones in last 8 rounds, 8 feature maps Yt represent the corresponding features for
the opponent’s stones in last 8 rounds, 1 feature map has a constant value of either 1 if black is to
play or 0 if white is to play. These maps are concatenated together to give input features. History
features are necessary for the game of Go to forbid repetitions, the color feature plane is necessary
because komi is not observable.

The output of the neural network is passed into two separate heads for computing the policy and
the value respectively. The value head outputs a scalar value which represents the estimated state
value, and the policy head outputs a vector of dimension 19 × 19 + 1 which represents the logit
probabilities for all intersections and the pass move.

2.1.2 AlphaDraughts Zero

In AlphaDraughts Zero, the input of neural network is a 8× 8× 3 image stack comprising 3 feature
maps. The first map encodes the current game state and takes value in {−1, 0, 1}. The second
feature map represents the mask, where 1 represents legal move positions and 0 represents illegal
move positions. The third feature map indicates the current player, it has a constant value of either
1 if white is to play or −1 if black is to play.

The value head of AlphaDraughts Zero is exactly the same as AlphaGo Zero whereas its policy head
takes a different form. The output of policy head is a vector of dimension 8 × 8 × 4, where 8 × 8
encodes the piece to choose, 4 encodes the 4 possible move directions of the chosen piece.

2.2 Common neural network structure

The general structure [4] of the deep neural network is a residual block [6] towers. It consists of a
single convolutional block followed by 19 residual blocks [6].

The convolutional block consists of the following modules:

• A convolution of 256 filters of kernel size 3× 3 with stride 1

• Batch normalization [7]

• A rectifier non-linearity [8]

Each residual block consists of the following modules:

• A convolution of 256 filters of kernel size 3× 3 with stride 1

• Batch normalisation

• A rectifier non-linearity

• A convolution of 256 filters of kernel size 3× 3 with stride 1
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• Batch normalization

• A skip connection which adds the input to the block

• A rectifier non-linearity

The value head consists of the following modules:

• A convolution of 1 filter of kernel size 1× 1 with stride 1

• Batch normalization

• A rectifier non-linearity

• A fully connected linear layer to a hidden layer of size 256

• A rectifier non-linearity

• A fully connected linear layer to a scalar

• A tanh non-linearity outputting a scalar in the range [−1, 1]

The policy head consists of the following modules:

• A convolution of 2 filters of kernel size 1× 1 with stride 1

• Batch normalisation

• A rectifier non-linearity

• A fully connected linear layer that outputs a vector of the corresponding dimension

The hyperparameters of the structure such as the number of residual blocks or the number of filters
in each residual blocks can be changed to increase or reduce the size of the neural network. In our
implementation of AlphaDraughts Zero, the parameter setting is flexible, which allows experiments
with different neural network architectures.

3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a well-known heuristic search algorithm to build an asymmetric
tree model by exploring legal moves stochastically. It draws a lot of attention during these years
because of its success application in computer Go program and its potential application in many
different problems. Beyond the game itself, MCTS theory can be used in any field in which we
predict the consequence by the (state, action) pairs. In this section, we introduce MCTS from the
following aspects: data structure, basic algorithm and exploration-exploitation strategy.

3.1 Data Structure

There are two kinds of nodes representing graph node and graph edge respectively, namely the State
node and the Action node.

3.1.1 State Node

As the name suggests, State node contains all information about the current game state. Its parent
is an Action node, which represents the corresponding move from the last game state to itself.
Its children are Action nodes representing all legal moves. A boolean flag indicates if the game
terminates at the node.

3.1.2 Action Node

Both the parent and the children of an Action node are State nodes. We can consider the pair of
(parent node, node, child) as (previous game state, move, current game state). It keeps track of four
statistical variables of the edge:

• N: the number of times the action has been taken
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• W: the total value of the next state

• Q: the mean value of the next state

• P: the prior probability of selecting this action

Figure 1: MCTS nodes

3.2 Basic Algorithm

There are four basic operations in MCTS which allow the tree grow up, namely Selection, Expan-
sion, Evaluation and Backpropagation.

3.2.1 Selection

Everytime when we reach a non-leaf node, one of its children need to be selected according to a
specific strategy. The child is selected deterministically for a competitive play, meaning that the
edge with the greatest N will be chosen. The child is selected stochastically for an exploratory play,
meaning that we choose the action from the distribution π ∼ N 1

τ .

3.2.2 Expansion

Everytime when we reach a leaf node where the game is not yet finished, an expansion is applied
to initialize the children of the current leaf node. The deep neural network takes the game state as
input and gives the matrix of the estimated prior probability p, including some illegal moves. The
tree needs to select all legal moves and initialize the action nodes with:

N =W = Q = 0

P = pmove

3.2.3 Evaluation

Evaluation is a complete process going from a root to a leaf node. In the simulation step, we choose
the child with the maximum Q + U , where U is a function of P and N that increases if an action
hasn’t been explored much, relative to the other actions, or if the prior probability of the action is
high, which we will give more details in next sub-section. An expansion is then performed when a
leaf node is reached.
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3.2.4 Backpropagation

Backpropagation is performed after evaluation steps. Each edge that was traversed to get to the leaf
node is updated by:

N ← N + 1

W ←W + v

Q←W/N

where v is the value estimated by value head.

Figure 2: MCTS

3.3 Exploration-Exploitation Strategy

The exploration-exploitation trade-off is a fundamental dilemma whenever we learn about an envi-
ronment by trying things out. Exploration means to make the best decision given current game state,
while exploitation means to try more choices to gather more information. Similarly to multiarmed
bandit problem, we must make a choice to maximize the income in each iteration.

The Upper Confidence Bounds for Trees (UCT) algorithm is an optimal choice for standard MCTS.
It is derived from the Upper Confidence Bounds - 1 (UCB1) algorithm. In AlphaGo Zero, a variation
called Polynomial Upper Confidence Trees (PUCT) is used. The score for a child (s, a) is calculated
as:

U = Q+ cpuctP (s, a)

√∑
bN(s, b)

1 +N(s, a

Therefore, the less we have tried this action, the greater U will be. This encourages exploration.
By increasing cpuct, we put more weight toward this exploration term. By decreasing it, we more
strongly value exploiting the expected result Q.

5



4 Training Pipeline

Figure 3: Self-play reinforcement learning in AlphaGo Zero. Reprinted from [4].

To summarize the training process in Figure 3, in each iteration, AlphaGo Zero plays a game
s1, s2, ..., sT against itself. In each position st, a Monte-Carlo tree search (MCTS) is executed
using the latest neural network. Moves are selected according to the search probabilities πt com-
puted by the MCTS, i.e. at ∼ πt, where at denotes the action to take. The terminal position sT is
used to compute the game winner zt of each time step t of the latest self play game. zt takes value
in {−1, 1}, it is computed based on the terminal position sT and the player at each time step t, it
represents the outcome of the game from the perspective of the player at time step t. When one
game is finished, the data of each game positions st is stored together with the corresponding search
probability πt, the outcome of game zt, we then get a tuple (st, πt, zt) for each time step t of the
latest self play game. All these data will be thus part of the dataset with which we train the neural
network. The data will be sampled uniformly from the dataset, i.e. from all time steps of recent self
play games. The optimisation of neural network consists of minimizing the loss Equation 1, where
c is a parameter controlling the level of L2 weight regularisation to prevent overfitting, θ denotes
the parameter of the neural network, v denotes the output of the value head of the neural network,
p denotes the output of the policy head of the neural network. The neural network is optimised to
minimise the mean squared error between the predicted value v and the self play winner z, and to
maximise the similarity between the neural network’s predicted move probability p and the MCTS’s
search probability π by minimising the cross-entropy loss between them.

loss = (z − v)2 − πᵀ logp+ c||θ||2 (1)

AlphaGo Zero’s self-play training pipeline [4] consists of three main components, all executed asyn-
chronously in parallel. These three components are optimisation, evaluator, self-play.

4.1 Optimisation

Each neural network is optimised with 64 GPU workers and 19 CPU parameter servers. The batch-
size is 32 per worker, for a total mini-batch size of 2048. Each mini-batch of data is sampled
uniformly at random from all positions from the most recent 500000 games of self-play. Neural
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network parameters are optimised by stochastic gradient descent with momentum and learning rate
annealing, using the loss Equation 1 with L2 regularisation term c is set to 10−4. The optimisation
process produces a new checkpoint every 1000 training steps.

4.2 evaluator

As the data is generated by self-play, we need to ensure the quality of the data by making sure to
use the best player obtained so far to generate it. Every time a new checkpoint of neural network is
generated, it will be evaluated against the current best neural network. Each evaluation consists of
400 games using an MCTS with 1600 simulations. If the new checkpoint wins by a margin greater
than 55%, then it becomes the best neural network and will be used to generate data.

4.3 self-play

The current best neural network is used to generate data. In each iteration, this network plays 25000
games of self-play, using 1600 simulations of MCTS. The clearly lost games could be resigned to
save computation time, for example, AlphaGo Zero could resign if its root value and best child value
are lower than a certain threshold.

4.4 Implementation

In the implementation of our AlphaDraughts Zero, the three main components optimisation, eval-
uator, self-play are implemented in a sequential manner. The pseudo code is Algorithm 1.

Algorithm 1 Sequential Training Pipeline - AlphaDraughts Zero
Random initialization of neural network fθ
for iteration i in a certain number of iterations do

build a new MCTS α(fθ) with a certain number of simulations
for a certain number do

data buffer← empty list
current state node← the root of current best player MCTS α(fθ)
while current game is not finished do

π ← search policy based on statistics stored on the current state node
get action node according to π
add new data item (s, π, z) to data buffer . s denotes the game position
current state node← the only child of action node . move to next state node

update z value of each data item in data buffer based on the outcome of self play
save data buffer to dataset on disk . dataset is a fixed-sized FIFO container

train fθ for a certain number of epochs using the current dataset
if i modulo save frequency = 0 then

save fθ as a new checkpoint
evaluator updates best player if the new checkpoint is better than the current best player

However, this sequential training pipeline could easily be adapted to a parallel training pipeline. It is
sufficient to distribute different tasks to different processes. The communication between processes
could be managed by passing new checkpoint, latest neural network parameters θ, current dataset
size, etc. to each other when needed. Moreover, asynchronous IO techniques could be considered
when saving self play data to save time.

5 AlphaDraughts Zero

In this section we present our AlphaDraughts Zero, where we apply the algorithm to English
Draughts, a popular two-player board game. It is implemented in Python and PyTorch. The source
code can be found at https://github.com/Tong-ZHAO/AlphaDraughts-Zero. In the
following, we first introduce the game rule, and then the adapted algorithm.
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5.1 Game Rule

Board The game is on a 8×8 chequered board. The playable surface consists of the 32 dark squares
only.

Piece Each player has 12 pieces in total. The start positions are shown in figure 4. The player with
the darker-colored pieces moves at first. There are two kinds of pieces: Men and Kings. At the
beginning, all the pieces are Men.

Kings If a Man moves into the last row on the opponent’s side, i.e. the first row of the board for
white, and the 8th row of the board for black, it becomes a King.

Move There are two ways to move in English Draughts, i.e. single move and eat jump. A single
move means to slide a piece diagonally to an adjacent and unoccupied dark square. A jump move
means that we jump over an opponent’s piece which is on an adjacent dark square. In this case, the
opponent lose its piece. Multiple jumps are possible and mandatory. If a player has the option to
jump after one jump, he must take it, even if doing so results in disadvantage for the jumping player.
However, if there is more than 1 way to jump, the player can choose among them. Men can only
move forward and Kings can move both forward and backward.

End A player wins by capturing all of the opponent’s pieces or by leaving the opponent with no
legal move.

Figure 4: A typical game board Figure 5: Numerical representation

5.2 Game State

Game state records all necessary information to define the current hand. Besides standard infor-
mation like the board map, the player and the opponent, we add a list of movable pieces and a flag
indicating if it is mandatory to do a jump. These two additional variables are used to handle multiple
jumps. An example is shown in figure 5.

5.3 Move

In order to deal with the case of multiply jumps, the move is defined by five elements: the coordinate
of the piece, the direction, a flag indicating if the move is a jump and a flag indicating if we change
the player in next turn, i.e. (x, y, direction, flag-jump, flag-change). This setting helps us decompose
a multiply jump into several steps, which facilitates the calculation of the neural network. So now
we can formulate all kinds of moves:

Simple Move is represented by (x, y, direction, False, True).

Jump is represented by (x, y, direction, True, False). The only movable piece in next state is (x, y).

5.4 Neural Network

While the network structure, ResNet [6], is kept, we adjusted the input and the output of the network.

Input Data is composed of three 8 × 8 matrices, representing the current board map, the movable
pieces and the current player, respectively.
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Policy Head gives a vector of dimension 8 × 8 × 4, where Pi,j indicates the predicted probability
for moving the piece at the position (i, j) to 4 directions: Northwest, Northeast, Southwest and
Southeast.

Value Head gives a single value in the range (−1, 1), which indicates the estimated success rate in
the current game state.

5.5 MCTS

MCTS plays an important role in the simulation. It ensures that all nodes in the tree are legal and
controls the next player and its movable pieces. When it initializes a leaf node, all illegal moves are
ignored. An exception happens when we finish a multiple jump, during which all moves are illegal
while the game is not finished. In this case, we inserve the player and the opponent in the current
state node. Its children will then be initialized when the node is visited again.

6 Experiments

In this section, we briefly show some plots of our experiments. Figure 6 shows the training curve of
one of our experiments, the first row represents the average loss of each training epoch of the neural
network, the second row represents the length of self-play games in each iteration. Figure 7 shows
the graphical user interface of the English draughts game. We implemented it from scratch and it is
used to demonstrate the human-machine competition, which is used to assess the capability of the
model.

Figure 6: Training curves. Average loss, self-play game length.

Figure 7: Graphical user interface. The 4 figures show selection of piece, selection of move given a
piece, crowned piece / king and the celebration of crown

Human-machine competition is a qualitative assessment. The quantitative assessment can be
achieved by Elo rating system [9]. We provide the basic functions of Elo rating system in our
source code.

7 Discussion

In this section, we plan to talk about some open questions. One famous open question is the per-
formance of AlphaGo Zero style techniques in face of games with incomplete information, which
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reflects their versatility. In such situations, the decision making process is no longer only dependent
on the current observable states, it also demands the capacity of dynamic reasoning. An ideal ar-
tificial intelligence should be able to guess the behavior of the opponent, to assess the opponent’s
situation, or even to deduce what the opponent knows about itself to make the correct decision.

Essentially, AlphaGo Zero is a mechanism of finding optimal decision based on observed informa-
tion. For example, the neural network of AlphaGo Zero takes the observed current state as input
and returns a estimated decision, this is achieved by searching in a high dimensional space with
some techniques to reduce the time complexity and to improve the search efficiency. In games with
complete information, this decision will be consistent as long as the observed information is iden-
tical. However, in games with incomplete information, the optimal decision may not be the same
given the current observed information, as it may depends on chances, etc. This could be considered
as a source of noise. We are not sure if this mechanism is robust enough to deal with such kind
of situations, we are not sure if the training could converge by learning to take into account such
noises or it just results in oscillations. One approach to tackle this problem could be to make use of
historical information. When dealing with games with incomplete information, humen often deduce
hidden current situation by analyzing historical information. This could be done by using RNNs,
LSTMs [10] or Transformers [11].
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