Multinomial distribution & categorical distribution

In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for rolling a k-sided die n times. For n independent trials each of which leads to a success for exactly one of k categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories.

  • When k is 2 and n is 1, the multinomial distribution is the Bernoulli distribution.
  • When k is 2 and n is bigger than 1, it is the binomial distribution.
  • When k is bigger than 2 and n is 1, it is the categorical distribution.

The Bernoulli distribution models the outcome of a single Bernoulli trial. In other words, it models whether flipping a (possibly biased) coin one time will result in either a success (obtaining a head) or failure (obtaining a tail). The binomial distribution generalizes this to the number of heads from performing n independent flips (Bernoulli trials) of the same coin. The multinomial distribution models the outcome of n experiments, where the outcome of each trial has a categorical distribution, such as rolling a k-sided die n times.


In probability theory and statistics, a categorical distribution (also called a generalized Bernoulli distribution, multinoulli distribution[1]) is a discrete probability distribution that describes the possible results of a random variable that can take on one of K possible categories, with the probability of each category separately specified.

The parameters specifying the probabilities of each possible outcome are constrained only by the fact that each must be in the range 0 to 1, and all must sum to 1.

The categorical distribution is the generalization of the Bernoulli distribution for a categorical random variable, i.e. for a discrete variable with more than two possible outcomes, such as the roll of a die. On the other hand, the categorical distribution is a special case of the multinomial distribution, in that it gives the probabilities of potential outcomes of a single drawing rather than multiple drawings.